Ir arriba
Información del artículo

Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation

J.R. Paredes-Miguel, M. Cano-Lara, A.A. Garcia-Granada, A. Espinal, M.J. Villaseñor-Aguilar, L. Martinez-Jimenez, H. Rostro-González

Advanced Photonics Research

Resumen:

Ultrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and R2 score.


Resumen divulgativo:

Artículo explora IA (DNNs) para predecir parámetros láser de femtosegundos en formación de óxido de molibdeno en películas finas. Permite pruebas numéricas, optimiza parámetros y reduce experimentos en fotónica de precisión.


Palabras Clave: deep neural networks, material characterization, molybdenum thin films, oxide formation, ultrafast pulsed lasers


Referencia DOI: DOI icon https://doi.org/10.1002/adpr.202400113

In press: Abril 2025.



Cita:
J.R. Paredes-Miguel, M. Cano-Lara, A.A. Garcia-Granada, A. Espinal, M.J. Villaseñor-Aguilar, L. Martinez-Jimenez, H. Rostro-González, Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation. Advanced Photonics Research.


    Líneas de investigación:
  • Análisis de datos
  • Industria conectada: aplicación de técnicas de deep learning a procesos industriales